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Complex transformations of chemical signals passing through a passive barrier
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It has been recently observed that a passive barrier separating two excitable chemical media may transform
the frequency of a train of incoming pulses. In this work we apply the FitzHugh-Nagumo-type model to study
this phenomenon in a detailed way. Our numerical calculations demonstrate that at the barrier a periodic train
of pulses may be transformed into a complex output signal. The ratio of frequencies of the output and the input
signals, plotted as a function of the barrier’s width or as a function of the input signal frequency, has a
devil’s-staircase-like shape.
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I. INTRODUCTION

Properties of chemical excitable systems have been s
ied for many years@1#. These systems are characterized b
single steady state and they answer to perturbations in a
characteristic way. Small-amplitude perturbations are rap
dumped out, but perturbations with a large amplitude
amplified and the system returns to its steady state a
much longer time than in the case of a small perturbati
The evolution forms a closed trajectory~so-called excitation
cycle! in the phase space. For a given type of perturbation
can introducesmin as the minimum strength of perturbatio
that leads to the system’s excitation. The excitable syst
have another interesting feature: just after an excitation t
become refractory with respect to consecutive perturbat
and a certain amount of time~refractory time! is needed be-
fore they can be reexcited. The refractory timet r is schemati-
cally shown in Fig. 1~a!.

Let us consider two successive perturbations, occurrin
times 0 andt. Let us fix the strengths of these perturbations
At time 0 every perturbation characterized bys (s.smin)
excites the system. A successful excitation by the sec
perturbation depends on the values oft and s. If s is too
small, the system is not excited by the second perturbat
nor by the first one. If the perturbation is strong enough, th
reexcitation occurs whent.t r . One may also expect thatt r
gets smaller when perturbation’s strength increases. The
guments given above indicate that areas of successive r
citation @marked with ‘‘1’’ in Fig. 1~a!# should be placed in
the parameter space (t,s) as shown in Fig. 1~a!.

For a moment let us assume that the state of the syste
not significantly changed after an unsuccessful perturba
and the probability of excitation shown in Fig. 1~a! remains
valid if a periodic sequence of perturbations is consider
Now t denotes the time from the last perturbation that
cited the system. Let us consider a periodic sequence of
turbations at timesktp ,kPN. It is easy to see that iftp
.t r(s) then each perturbation will excite the system.
t r(s)/2<tp,t r(s) then every second of them will excite th
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system, ift r(s)/3<tp,t r(s)/2, then every third perturbation
will do it and so on. If we plot the firing numberf ~ie., the
ratio between the frequencies of excitations and pertur
tions! as a function oftp @Fig. 1~b!#, then we obtain a plot
similar to devil’s staircase@2#. Another staircaselike plot can
be obtained if we represent the firing number as a function
s for a fixed tp @see Fig. 1~c!#.

Of course, the ‘‘naive’’ model we have just discussed
extremely crude, but it shows that devil’s-staircase-like d
pendence of firing number on the period of perturbatio
should be widely observed in excitable systems. It is t
indeed. Such dependence can be found in a number of pa
concerned with periodic perturbations of a homogeneous
citable system which were published by Marek and c
workers@3–6#. Another staircaselike dependence of the
ing number was observed by Toth, Gaspar, and Showalte
spatially distributed excitable systems linked with a capilla
tube @7#. The excitable waves were generated in one sys
and they might excite the other one via reagents’ transpo
the capillary. In this experiment the diameter of the capilla
controlled the strength of perturbation. If it was small, t
refractory time of the perturbed system was much lon
than the refractory time in the system where waves w
originally generated. As a result only a fraction of genera
waves excited the system after passing through the capi
and the firing number as the function of entering wave per
has a devil’s-staircase-like dependence~cf. Fig. 6 in Ref.
@7#!.

In this paper we are concerned with yet another exam
of a spatially distributed excitable system, in which such
resonant transformation of excitation occurs.

Let us consider a simple one-dimensional structure, co
posed of two intervals, in which the system is in an excita
state, separated by a narrow passive barrier, where the
evolution is given by the diffusion equation. Such a syst
can be seen as a prototype of a plane excitable medium—
example, a membrane filled with an immobilized cataly
which is divided into two subplanes by a stripe without t
catalyst@8#. Within the active areas pulses of excitation m
be generated and they can propagate. In the passive ba
reactions do not occur and some of the reagents can
diffuse through it. If we consider pulses of excitation cha
acterized by wave vectors perpendicular to the barrier t
©2002 The American Physical Society12-1
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FIG. 1. The ‘‘naive’’ model of a perturbed excitable system
Figure 1~a!: The probability that the second perturbation excites
system as a function of the strength of perturbation~s! in smin units
and the time separating perturbationst. For a givens the line sepa-
rating the excited systems by the second perturbation from u
cited ones showst r(s). Note that for timest,t r and fors,1 the
system cannot be excited. Figure 1~b!: The firing number as the
function of the time interval between consecutive perturbations
the system@in tp /t r(s) units# for a fixed strength of perturbation
Figure 1~c!: The firing number as the function of the strength
perturbations, for a fixedtp .
01621
the symmetry allows one to describe the system as one
mensional. We have studied the time evolution of such s
tems@9# and we have shown that under certain conditions
barrier works as a transformer of the frequency for a regu
train of pulses approaching it. As Fig. 2 shows, after a sh
transient period a stable periodic output signal is obser
for the whole time within which the computations are pe
formed (tmax510 000). For the considered frequency of t
input signal and barrier’s width two out of each five arrivin
pulses are transmitted, thus the firing number equals 2/5.
transformation of frequency on the barrier was observed
both FitzHugh-Nagumo@10# and Rovinsky-Zhabotinsky
models@11–13# of the Belousov-Zhabotinsky reaction@14#.
The implications of the frequency transforming by a pass
barrier on selected signal processing devices were discu
in Ref. @15#. In our previous papers@9,15# we were mainly
concerned with quite simple signal transforming on a barr
like the division of the original frequency by 2 or 3, becau
such types of behavior are quite ‘‘robust,’’ i.e., they may
observed for a wide range of input signal frequencies a
barrier’s widths. However, for certain sets of parameters
have also found a more complex output signal. Here we g
more information on the frequency transforming pheno
enon. The FitzHugh-Nagumo-type model is used for num
cal studies. We present new modes of transformation, wh
were not described in our previous papers. Some of th
modes have a high level of complexity. We also discuss
computational difficulties connected with the numerical stu
ies of waves propagating through a passive barrier.

The paper is organized as follows. Section II contain
short description of the FitzHugh-Nagumo model, the n
merical method and an overview of the results concern
the frequency transforming on a passive barrier. In Sec.
we indicate the numerical problems we have faced. The n
results are presented in Sec. IV. Section V contains the c
clusions.

e

x-

f

FIG. 2. The time evolution of the value ofu before the barrier
~curve 1! and just behind it~curve 2!. The small maxima~on curve
2! do not develop into regular pulses, so the firing number equ
2/5. We have used the FH-N model withtp53.14 (f p50.318), d
50.1707, and a uniform grid withn5251.
2-2
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COMPLEX TRANSFORMATIONS OF CHEMICAL SIGNALS . . . PHYSICAL REVIEW E 66, 016212 ~2002!
II. TRANSFORMATION OF FREQUENCY
ON A PASSIVE BARRIER

A. The FitzHugh-Nagumo model

The FitzHugh-Nagumo~FH-N! model was originally in-
troduced to describe the excitable behavior of nerve tiss
@16,17#. It uses two variables~u, v! and the dynamics of the
first of them is given by a third-order polynomial inu,
whereas the dynamics related tov is a linear function inu
andv. Even such a simple model shows an interesting n
linear behavior. In even more simplified version
FitzHugh-Nagumo model we use, the dynamics in active
eas is described by the following equations@10,16,17#:

t
]u

]t
52g@ku~u2a!~u21!1v#1Du¹2u, ~1!

]v
]t

5gu ~2!

with the parameterst50.03,g51,k53.0,a50.02 ~as given
by Motoike and Yoshikawa in@10#! andDu50.000 45@18#.
For these values of parameters the system has a single
tionary solution (u,v)5(0,0), homogeneous in space, whic
is excitable. This system may be excited by a local decre
in the value ofv, which initiates a propagating pulse o
concentration. The variablesu and v cannot be directly as
sociated with concentrations of chemical spices, but th
behavior resembles the one of the activator~u! and inhibitor
(v) in a chemical system.

We assume that in the passive areas the kinetic terms
absent in the corresponding equations. The diffusion of a
vator is possible, thus it is natural to call these regions ‘‘d
fusion areas.’’ The equations describing the time evolution
u andv in these areas are@10#

t
]u

]t
5Du¹2u, ~3!

]v
]t

505const ~4!

with t50.03 andDu50.000 45, as in the excitable areas.

B. Numerical integration of reaction-diffusion equations

In this paper we investigate a signal of a high frequen
which passes through a passive barrier. By the signal
understand a regular, stable train of traveling pulses initia
at one end of the system with the frequencyf p . The time
evolution of the signal is studied by numerical integration
the reaction-diffusion equations in the active areas
within the barrier@Eqs. ~1!–~4!#. For a signal formed by
planar waves with the wave vectors perpendicular to the
rier the system can be modeled as an interval of the lengl.
For numerical integration it is divided inton parts byn11
points of a grid, including both ends~Fig. 3!. The distances
between the grid pointsdl may be different; by selecting
fine grid around the barrier we can increase the accurac
01621
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calculations, while a crude grid far away from the barr
saves computer time without affecting the accuracy. In Fig
the black lines correspond to excitable medium and the b
rier, indicated by the gray line, is located between grid poi
n1 andn2 (1!n1,n2!n). It means that the evolution of th
system at all grid pointsj P@0,n1#ø@n2 ,n# is given by the
set of reaction-diffusion equations corresponding to the
citable system@Eqs.~1! and ~2!#, and the equations describ
ing the passive medium@Eqs.~3! and~4!# give the evolution
at all grid pointsi P(n1 , n2). The barrier’s widthd is esti-
mated as

d>~n22n121!dlb , ~5!

wheredlb is the distance between neighboring grid points~in
our calculationsdlb is constant within the barrier and aroun
it!.

There are free flow boundary conditions between pass
and active media and no flux boundary conditions at b
ends of the interval. Initially both active and passive are
are in their stationary states. Pulses of excitation are initia
at the left end of the interval by a local decrease in the va
of v to v ini520.8 and they travel to the right, coming acro
the passive barrier on their way. We focus our attention
trains of pulses which are initiated regularly at timesktp , for
selectedtp.0 andk51,2,3, . . . ,kmax. In the following we
distinguish the ‘‘input signal’’~a train of pulses arriving a
the barrier! and the ‘‘output signal’’—a train of pulses goin
away after crossing the barrier. The frequency of the in
signal is defined asf p51/tp .

The concentrations of reagents of interest are calcula
using an implicit method based on the Crank-Nicolson d
cretization of the Laplace operator@19#. The distance be-
tween neighboring grid points~dl! is the space step of nu
merical integration. In our computations we have appl
two types of the space grids. In a part of calculations
whole intervall has been divided inton equal parts~in this
casedl5 l /n!. We have used equally spaced~uniform! grids
with n5400, 800 or 1600. The passive gap has been loca
betweenn15180 andn25189 for n5400,n15360 andn2
5377 for n5800, andn15720 andn25753 for n51600.

In the other calculations we have used adaptive grids,
which the passive barrier and its neighborhood~so the part of
the system which has the most important influence on

FIG. 3. The scheme of the system studied. Black intervals c
respond to active areas, gray ones mark the barrier. LineA: the
barrier is located between the grid pointsn1 andn2 ~excludingn1,
andn2). The value ofu is observed at the grid pointsi 1 ,i 2, andi 3.
Line B: the scheme of the adaptive grid forn5800; the distance
between grid points is given above the line, the number of g
points separated by a particulardl is given below the line.
2-3
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nal’s transformation! has been covered with a fine grid and
both ends of the interval a longer distance between g
points has been used. We have considered a grid forme
n5800 grid points and 30 of them are placed within t
barrier ~the barrier is located betweenn15400 and n2
5431). The time evolution in the active areas surround
the barrier has been also calculated using the same fine
as for the barrierdlb5dl/8. We have considered 40 gri
points on each side of the barrier, for which the distan
between them isdlb . Next there are 40 grid points on eac
side with the distance 2dlb and yet another 40 points wit
the distance 4dlb . The reaction-diffusion equations in th
remaining part of the system are solved with a crude grid
dl ~see Fig. 3!. In order to test the numerical stability w
have also used another adaptive grid, for which the to
number of grid points isn5870 and in this case the passiv
barrier, located betweenn15420 andn25481, is covered
with 60 points ofdlb5dl/16. In the active areas located o
both sides of the barrier the grid is fine (dl/16,40 points! and
next it increases. as follows:dl/8,20 points,dl/4,40 points,
anddl/2,40 points. The rest of the system is covered with
space stepdl.

The values of activator and inhibitor are recorded at in
cators located at the grid pointsi 1 ~before the barrier!, i 2
~just behind the barrier!, and i 3, far behind the barrier, a
shown in Fig. 3. By comparing the time evolutions ati 1 ,i 2,
and i 3 we can tell whether a pulse that arrives at the bar
is able to cross it. Moreover, by counting the number
maxima of activator within a certain time interval we ca
measure the frequency of the input and the output signalsf p
and f o , respectively!. When calculatingf p and f o we neglect
a few initial pulses~usually 10 or 20! in order to eliminate
transient behavior at the beginning of evolution. To descr
quantitatively the passive barrier as a device that transfo
chemical signal frequency, we introduce the filtering ratio~or
a firing number, if notation of Refs.@3–7# is used! defined as
f o / f p .

C. The frequency transforming on a passive barrier

Let us consider the system shown in Fig. 3. A single pu
of excitation traveling in the excitable medium towards t
barrier may cross it, provided that the barrier is narr
enough. It means that the pulse arriving at one side o
excites the active area on the other side and in this case
barrier is transparent to the pulse. The maximum width o
transparent barrier is called the penetration depthdmax. Bar-
riers wider thandmax are impenetrable for a single puls
because for a wide barrier the value of diffusing activator
the other end of the barrier is too small to excite the act
area behind the barrier. We have found@9,18# that for the
parameters of the model used in this studydmax'0.163.

Now let us consider a train of incoming pulses with
constant frequencyf p . It turns out@9,15# that for a certain
range off p and barrier’s widthd the passive gap transform
the frequency of the input signal. It means that the freque
of the transmitted signalf o ~observed behind the barrier! is a
fraction of f p . Some of the incoming pulses are stopped
the barrier, while the others get through.
01621
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Figure 4 presents a diagram in the space of parame
(d,tp) showing ‘‘phases’’ in which the filtering ratio is som
proper fraction given in the diagram~the white regions with
labels!. For example, in the area labeled as ‘‘1’’ every inc
dent pulse is able to get through the passive barrier~the
barrier is transparent to all pulses! and in the area labeled a
‘‘1/2’’ every second of the incident pulses is transmitted. T
gray regions between the labeled areas in Fig. 4 corresp
to more complex transmission patterns. Whend increases we
observe that the filtering ratio decreases, which means
the pulses are less and less frequently transmitted. Finally
barrier becomes too wide and no pulse can cross it, wh
corresponds to the area labeled as ‘‘0.’’ The dashed line
Fig. 4 mark tp53.10(f p50.323), line (a); tp53.70(f p
50.270), line (b); andd50.160, line (c). The cross stands
for tp53.10 andd50.1702 and shows the parameters us
to calculate the time series presented in Fig. 5. The filter
ratios as functions of parameters from the dashed li
(a),(b), and ~c! are discussed in Secs. III and IV. Figure
has been obtained for a uniform grid withn5251 anddt
5531023.

Figure 5 illustrates the filtering ratio equal to 1/3~the
region corresponding to 1/3 is located in the bottom rig
hand side corner of the diagram in Fig. 4!. The values of
activator at the grid points:i 1 @the upper curve~1!#, i 2 ~curve
2!, and i 3 ~curve 3! ~cf. Fig. 3, line A) are presented as
function of time. Curve 1 corresponds to the incident puls
~input signal! with frequencyf p50.323. Curve 2 shows the
transmitted pulses~output signal!, recorded just behind the
barrier. Its frequencyf o5 f p/3. It is clear that every third of
the incident pulses is able to cross the passive gap. S
oscillations that can be seen on the curve 2 do not deve
into pulses and they disappear when the output signal is
served at larger distances behind the barrier~cf. curve 3!.
The width of the barrier isd50.1702. Figure 5 has bee
obtained for a uniform grid withn5400, i 15170, i 2
5199, i 35390, anddt5131023.

FIG. 4. Filtering ratio (f o / f p) for the FitzHugh-Nagumo mode
as a function of the barrier’s width~d! and the time shift between
consecutive pulses (tp). The white, labeled areas correspond to t
situation whenf o is the fraction off p given in the picture. Gray
color marks more complicated transformations of frequency. T
dashed lines in Fig. 4 correspond to (a)tp53.10 (f p

50.323),(b)tp53.70 (f p50.270),(c)d50.160. The cross stand
for tp53.10 (f p50.323) andd50.1702.
2-4
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III. NUMERICAL DIFFICULTIES

The solutions that correspond to the filtering ratio 1/2
1/3 are quite stable numerically and they cover a large pa
the parameters’ space. In order to learn more about w
happens in the gray areas of Fig. 4 we have performe
series of calculations with one of the parameters~the width
of the passive barrierd or the time shift between consecutiv
incident pulsestp) fixed and the other changing within
certain range. By monitoring the input and output sign
~similar to those presented in Fig. 5! we have been able to
calculate the filtering ratio for the given combination ofd
and tp and describe the sequence of transmitted/stop
pulses in the input signal, which leads to a particular value
f o / f p . The calculations have been done for parameters
the lines of constantd or tp shown in Fig. 4. The computa
tions have had to be performed for a period of time lo
enough to observe many full cycles of signal transformati
However, we have discovered that the results of calculati
are quite sensitive with respect to the size of the grid and
time integration step (dt) used in computations.

Figure 6 presents a set of curves showing the filter
ratio for tp53.10 (f p50.323) as a function ofd. The con-
sidered values of parameters are situated on the horizo
dashed line~a! in Fig. 4. All results have been obtained fo
dt5131023 and the calculations have been performed up
tmax5500. For curve~a! in Fig. 6, marked with empty tri-
angles, a uniform grid withn5400 has been used. Curv
(b), marked with empty diamonds, indicates the results fo
uniform grid with n5800. In case of curves~c! ~filled
circles! and ~d! ~empty circles! we have used adaptive grid
with n5800 ~c! andn5870 (d), respectively. The value o
dlb in these simulations depends on system’s lengthl and the
number of grid points used. We have analyzed signals
indicators i 1 and i 2, located at approximately consta

FIG. 5. The time evolution of the value ofu at the grid pointi 1

~the upper curve 1!, at the grid pointi 2 ~curve 2!, and at the grid
point i 3 ~curve 3!. The evolution ati 3 ~curve 3! is presented to show
that the small maxima appearing on curve 2 disappear at lo
distances from the barrier. Filtering ratio equal to 1/3 is illustrat
We have usedtp53.10 (f p50.323) andd50.1702 ~this point is
marked with a cross in Fig. 4!.
01621
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distance ofl i50.6 ~in the dimensionless units of distanc!
before and behind the passive gap~cf. Fig. 3, lineA).

Results presented in Fig. 6 show a rich structure of diff
ent filtering ratios, which is much more complex than the o
shown in Fig. 1~c! for the ‘‘naive’’ model of an excitable
system. Of course, we can observe some similarities:
region of d for which f o / f p51/2 is the dominant one, an
the second most important isf o / f p51/3. But we also see
filtering ratios between 1/3 and 1/2, which are absent in
‘‘naive’’ model. The calculations show that althoughf o / f p as
a function of d looks very similar for different values o
parameters of integration, it shifts towards larger values od
when more accurate integration techniques are applied
significant shift between curves~a! and~b! in Fig. 6 indicates
that for the uniform grids that we have used the results
pend on the grid size. It is worth noticing that the behavior
the filtering ratio as a function ofd does not change, but th
function as a whole is just shifted towards wider barriers
is expected that for yet finer grid we should obtain resu
that are numerically stable, but a finer grid means that m
grid points should be used to describe a system of the s
size. However, in the implicit method of solving parabo
reaction-diffusion equations the solution at each time ste
obtained via iterations. In our case the roundup errors h
led to instabilities when few thousands of grid points ha
been used. The adaptive grids~Fig. 3, lineB) allow one to
obtain more accurate numerical solutions. For such grids
fine resolution within the most important area of the inves
gated system may be achieved without using large numbe
grid points, which provides both accuracy and stability
computations. As already mentioned, curve~c! in Fig. 4 has
been obtained for the adaptive grid withn5800. The reso-
lution in the neighborhood of the passive gap for this grid

er
.

FIG. 6. Filtering ratiof o / f p for fixed tp53.10 (f p50.323) and
d changing within the presented range. All results have been
tained for dt5131023, tmax5500, but for each of the curve
(a) –(d) different grids have been used. This figure illustrates
dependence of the results on computational parameters. Curvea):
marked with empty triangles. ordinary grid withn5400. Curve
(b): marked with empty diamonds, ordinary grid withn5800.
Curve (c): marked with filled circles, adaptive grid withn5800.
Curve (d): marked with empty circles, adaptive grid withn5870.
2-5



r

-

t t

cit
m
r

e
d

in
en

ve

th

na

ss

s
in

in
ve

a

nc
e

c

la

um
th
rs
im

ie

te

ne
pa

ro-
e

’’
ar-
is-
been

them
ns

ith
e

is

ond-
uch
ms

r’s
of
of

eral
ich

ond
are

as
text

J. SIELEWIESIUK AND J. GÓRECKI PHYSICAL REVIEW E66, 016212 ~2002!
dlb5dl/8'0.06 ~for l'25.72), which is four times smalle
thandl for the finest uniform grid. For curve~d! this resolu-
tion is twice higher, butf o / f p as a function ofd obtained for
both grids@curves~c! and (d)# are almost identical. There
fore we believe that the adaptive grid withn5800 grid
points is sufficient for our calculations and we have used i
obtain results given below.

Several values of the time step for the integration (dt
5531023, 131023, and 131024) have been used to
verify the consistency of the results.Although the impli
algorithms should be in general stable for all values of ti
and space integration steps, we have observed that nume
instabilities may appear fordt5531023 and largen. On the
other hand, the results fordt5131023 and dt5131024

have been regular and consistent. Consequently, we hav
cided to usedt5131023 for most of calculations describe
in this study.

IV. COMPLEX PATTERNS OF OUTPUT SIGNALS

The results presented in this section have been obta
for the adaptive grid withn5800. The passive area has be
located betweenn15400 andn25431 ~30 grid points inside
the passive barrier!. The incoming and outgoing pulses ha
been monitored at grid pointsi 15390 andi 25441, respec-
tively. The computations have been carried out with tim
stepdt5131023, up to tmax5500, if not explicitly stated
otherwise. About 150 pulses arrive at the barrier within
selected timetmax.

Let us introduce a notation that describes output sig
The incident pulses, observed ati 1 provide a natural time
scale in the system. We write ‘‘1’’ if the pulse gets succe
fully through the passive barrier and is observed ati 2 or ‘‘0’’
otherwise. Thus the output signal may be coded as a
quence of ‘‘0’’ and ‘‘1.’’ In such notation a common case
which every second pulse passes~filtering ratio f o / f p
51/2) is coded as (01) and the mode ‘‘1/3,’’ presented
Fig. 5, is described as (001). It is understood that the gi
sequence repeats periodically. A pattern coded
(abc . . . )p(de f . . . )q ~where p and q are positive integer
numbers! means that behind the barrier first the seque
(abc . . . ) is observed p times and next the sequenc
(de f . . . ) appearsq times. In this notation, nonperiodi
modes correspond to an infinite sequence of (abcde. . . ). If
pattern’s sequence is finite then it is very easy to calcu
the corresponding filtering ratiof o / f p because it equals to
the sum of the symbols in the sequence divided by the n
ber of symbols. For nonperiodic modes we can estimate
filtering ratio using a finite part of the sequence and of cou
the more pulses are taken into account, the better approx
tion is achieved.

Figure 7 presents the filtering ratio fortp53.10(f p
50.323) as a function of the width of the passive barr
changing from 0.171 to 0.176 with increment of 0.0001~this
has been achieved by changing the total length of the sys
l from 27.49 to 28.19 with increment of 0.016!. This value of
tp corresponds to line~a! in Fig. 4. The results coming from
our computations are marked with filled circles. In Fig. 7 o
may notice several plateaus, which correspond to simple
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terns of frequency transforming and are labeled with app
priate filtering ratios. Looking from left to the right we hav
modes: ‘‘1/2’’ with the sequence (01),‘ ‘2/59 with (01)
3(001),‘ ‘1/39 with (001),‘ ‘1/49 with (0001), and finally
‘‘0’’ with the sequence 0. It is remarkable that a ‘‘simple
frequency transformation occurs within a wider range of b
rier’s width than a complex one. Other interesting transm
sion patterns, located between those plateaus, have also
observed, but the ranges of values ofd, within which those
patterns appear, are so narrow that we have detected
just for a single width of the barrier. The unique patter
have been labeled with lettersa–k in Fig. 7. Probably the
most complicated transmission pattern is associated w
point a, located just below the plateau ‘‘1/2.’’ In this case th
sequence of pulses behind the barrier is (01)14(001)
3(01)13(001) and the corresponding filtering ratiof o / f p
529/60. For pointb in Fig. 7 the corresponding pattern
(01)4(001)(01)5(001) resulting inf o / f p511/24, for pointc
it is (01)3(001),f o / f p54/9; for point d it is (01)2(001),
f o / f p53/7; for point e it is (01001)3(0101001),f o / f p
59/22; for pointf it is (01)(001)2, f o / f p53/8; for pointg it
is (01)(001)6, f o / f p57/20; for point h it is (001)
3(0001),f o / f p52/7; for point j it is (00001),f o / f p51/5,
and pointk it is (0000001),f o / f p51/7.

Figure 4 suggests that transmission patterns corresp
ing to filtering ratios greater than 1/2 are also present. S
patterns are absent in the ‘‘naive’’ model of excitable syste
@Figs. 1~b! and ~c!#. To see them clearly calculations fortp
53.70(f p50.270) have been performed for the barrie
width d changing from 0.130 to 0.171 with increment
0.001 ~ l changing from 20.93 to 27.49 with increment
0.16!. This value oftp corresponds to line~b! in Fig. 4. The
results are plotted in Fig. 8. Indeed, one may see here sev
plateaus, labeled with corresponding filtering ratios, wh

FIG. 7. Filtering ratiof o / f p for fixed tp53.10 (f p50.323) and
d changing within the presented range. The filled circles corresp
to computational points. The curve forms several plateaus that
labeled with corresponding values of the filtering ratio~1/2, 2/5,
1/3, 1/4, and 0!. At points labeleda–k other values off o / f p ~and
other transmission patterns! have been observed. These values
well as all the sequences of transmitted pulses are given in
~Sec. IV!.
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are greater than 1/2. From left to right we have: plateau ‘
with the sequence(1); plateau ‘‘6/7’’ with (0111111); pla-
teau ‘‘4/5’’ with (01111); plateau ‘‘3/4’’with (0111); plateau
‘‘2/3’’ with (011); plateau ‘‘1/2’’ with (01), and plateau ‘‘0’’
with the trivial transmission pattern(0). Moreover, we
have observed more complex output signals. The po
labeled by letters correspond to the following patterns a
filtering ratios: point a, (0)(1)35, f o / f p535/36; point b,
(0)(1)14, f o / f p514/15; point c, (0)(1)10, f o / f p510/11;
point d, (0)(1)8, f o / f p58/9, and pointe (011111),f o / f p
55/6. The output signals observed here are dual to th
with filtering ratios smaller than 1/2.

Figure 9 presents the filtering ratio ford50.160
( l 525.72) plotted versus the frequency of incident puls
f pP@0.25,0.28# ~the time shift between consecutive puls
changing from 3.57 to 4.00 with increment of 0.02; appro
mate values oftp are given on the top axis of Fig. 9!. These
values ofd are placed on the line~c! in Fig. 4. The numerical
labels in Fig. 9 give the filtering ratio observed for corr
sponding plateaus or points. Looking at Fig. 9 from left
the right we have: plateau ‘‘1’’ with the sequence(1); point
‘‘9/10’’ with the sequence (0)(1)9; point ‘‘4/5’’ with
(01111); point ‘‘3/4’’ with (0111); plateau ‘‘2/3’’ with (011)
and plateau ‘‘1/2’’ with (01). In order to check if the filterin
ratio is a monotonic function off p we have performed a
number of calculations forf pP@0.2604,0.2618# and for f p
P@0.2646,0.2674#. The ends of these intervals correspond
f p for points A,B,C, andD in Fig. 9. We have probed th
system’s behavior usingdtp50.002 ~corresponding tod f p
50.000 14). In the intervalA-B the behavior is trivial, which
means that the studied systems splits into two classes c
sponding to (0111) and (011) modes@see Fig. 10~a!#.

Similar calculations have been performed for systems
cated between pointsC and D in Fig. 9 ~it corresponds to
f pP@0.2646,0.2674#). In this case we have observed tw

FIG. 8. Filtering ratiof o / f p for fixed tp53.70 (f p50.270) and
d changing within the presented range. The filled circles corresp
to computational points. The plateaus are labeled with corresp
ing values of the filtering ratio~1, 6/7, 4/5, 3/4, 2/3, 1/2, and 0!. At
points labeleda–e other values off o / f p ~and other transmission
patterns! have been observed. These values as well as all the
quences of transmitted pulses are given in text~Sec. IV!.
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patterns@a andb, see Fig. 10~b!# between the plateaus co
responding to filtering ratios 2/3@(011) mode# and 1/2@(01)
mode#. One of these patterns (b) describes quite simple
transformation of the original signal to (01)(011) mod
which is just 1:1 mixture of the neighboring modes. T
other point (a) corresponds to a more interesting behavi
Using the samedt anddlb as for the other points shown i
Fig. 10~b! ~filled circles! we have observedf o / f p50.519 17.
The decrease in time stepdt increases the filtering ratio a
follows: dt5131024 gives f o / f p50.556 02~empty circle!,
dt5231025 gives f o / f p50.575 94 ~empty triangle!, and
dt5131025 gives f o / f p50.578 95~cross!. Moreover, we
have observed that times between transmitted pulses are
always a multiplicity oftp . In order to explain it we have
examined the time evolutionu(t) at the pointsi 1 and i 2.
Figure 11 shows the relevant part of it. One can notice tha
some cases the transmitted signal does not develop in
pulse,u(t) slightly decreases and then it starts to increa
again, forming a pulse shifted with respect to the forci
signal. Such a strange behavior forf p50.2660(tp53.76)
does not disappear when we decreasedt anddlb . The mo-
ment it appears first and the time intervals between suc
sive strange excitations depend ondt, but we do not observe
any regularities. The presence of irregular ‘‘strange exc
tions’’ makes the filtering ratio at the pointa dependent on
dt. f o / f p at this point still remains smaller than 0.6 so w
cannot exclude a nonmonotonic dependence of the filte
ratio on f o / f p . Moreover, such strange excitations are o
served for the whole range of time steps we have used, so
are unable to blame numerical instabilities for their presen
The time evolution of the output signal between the stran

d
d-

e-

FIG. 9. Filtering ratiof o / f p for fixed d50.160 andf p changing
from 0.25 to 0.28~see the bottom axis!, which corresponds totp

decreasing from 4.00 to 3.57~see the approximate top axis!. The
filled circles correspond to computational points. The plateaus
well as single points are labeled with corresponding values off o / f p

~1, 9/10, 4/5, 3/4, 2/3, and 1/2!. The lettersA,B,C, andD mark the
intervals of the diagram which have been studied with a hig
resolution. The results for the intervalA-B are presented in Fig
10~a! and for the intervalC-D in Fig. 10~b!.
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excitations is a mixture of (01) and (011) modes with d
ferent proportions.

V. CONCLUSIONS

In this study we are concerned with the signals obtain
after a regular train of pulses crosses a barrier of a pas
medium. The calculations have been performed for the
citable medium described by the FH-N model, but we b
lieve that qualitatively the results may be applied to a
excitable system.

FIG. 10. Results of a more detailed examination of interv
A-B and C-D from Fig. 9. Figure 10~a!: Filtering ratio f o / f p for
fixed d50.160 andf p changing from 0.2604 to 0.2618. PointsA
andB in this figure correspond exactly to pointsA andB in Fig. 9.
We do not observe any filtering ratios different from 3/4 or 2
Figure 10~b!: Filtering ratio f o / f p for fixed d50.160 andf p chang-
ing from 0.2646 to 0.2674. The filled circles mark the compu
tional points. PointsC and D in this figure correspond exactly t
points C and D in Fig. 9. We have found a ‘‘strange’’ pointa
between plateaus 2/3 and 1/2~labeled with values of the filtering
ratio!, for which the value off o / f p depends on the time step o
integration. Different symbols mark the values of the filtering ra
obtained for: dt5131023 ~filled circle!, dt5131024 ~empty
circle!, dt5231025 ~empty triangle!, dt5131025 ~cross!. In the
studied region we have observed the pointb, that is regular and
corresponds to the transmission pattern (01)(011)~thus f o / f p

53/5).
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We have observed many different patterns of the transm
ted signal, which depend on the frequency of the input sig
on the barrier’s width. We have found that the mode in wh
every second pulse from the input signal is transmitted@(01)
mode# is the most common one for which a nontrivial tran
formation @i.e., different from (0) or (1)# of the original
signal occurs and it is observed for a wide range of para
eters. We have also found a family of transmitted signals
which one signal out ofn arriving gets through the barrie
@(0)n21(1) mode#. These signals, characterized by the firi
number 1/n, contribute to the devil’s-staircase-like behavi
of the firing number, expected on the basis of the ‘‘naiv
model of a perturbed excitable system. However, we h
also observed less trivial patterns of the transmitted sig
There is another interesting family of transmitted signa
which can be described as(0)(1)n21 and corresponds to th
case when only one signal is not transmitted out of evern
arriving. Such behavior cannot be described by the ‘‘naiv
model, but comes out quite naturally, if one assumes tha
excitable system that has not reached the stationary state
be reexcited by a perturbation that is strong enough~see
discussion in Ref.@7#!. Finally, we have observed many com
plex structures of the output signal, which follow the stru
ture of the Farey tree@20# ~take, for example, pointsa–h in
Fig. 7!.

In the paper we have focused a lot of attention on
numerical aspects of the problem, because the very com
patterns that we observed were related to the numerica
stabilities and disappeared when more accurate numerica
tegration methods were applied@with the sole exception of
the pointa—Fig. 10~b!—for which evolution was complex
for any method of numerical integration#.

Finally, we would like to mention that structured signa
have a transient character. It is known that the velocity
a pulse of excitation increases when its distance to

s

.

-

FIG. 11. A part of the time evolution of the value ofu at the grid
point i 1 ~input signal is represented by the upper curve 1! and at the
grid point i 2 ~output signal is represented by curve 2! observed for
d50.160,f p50.2660 withdt5131025 @point a is represented by
the cross in Fig. 10~b!#. The arrow marks the position of the strang
excitation in the output signal.
2-8
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previous pulse is larger@21#. Thus, far behind the barrier,
complex output signal transforms into a regular train
pulses. However, its frequency remains unchanged.

Similar type of frequency transforming have been fou
for models of the Belousov-Zhabotinsky reaction@9,15# ~the
Rovinsky-Zhabotinsky and the Oregonator models!. More-
.

s.

s.

01621
f
over, simple frequency transforming modes have been
served in recent experiments with the Belousov-Zhabotin
reaction, in which trains of excitable waves were crossin
passive region@22–24#. We expect that very complex mode
of frequency transforming described in this paper will
also observed experimentally.
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