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Complex transformations of chemical signals passing through a passive barrier
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It has been recently observed that a passive barrier separating two excitable chemical media may transform
the frequency of a train of incoming pulses. In this work we apply the FitzHugh-Nagumo-type model to study
this phenomenon in a detailed way. Our numerical calculations demonstrate that at the barrier a periodic train
of pulses may be transformed into a complex output signal. The ratio of frequencies of the output and the input
signals, plotted as a function of the barrier’s width or as a function of the input signal frequency, has a
devil's-staircase-like shape.
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I. INTRODUCTION system, ift,(s)/3<t,<t;(s)/2, then every third perturbation
will do it and so on. If we plot the firing numbdr(ie., the
Properties of chemical excitable systems have been studatio between the frequencies of excitations and perturba-
ied for many year$1]. These systems are characterized by aions) as a function oft, [Fig. 1(b)], then we obtain a plot
single steady state and they answer to perturbations in a vegimilar to devil’s stalrcaséz] Another staircaselike plot can
characteristic way. Small-amplitude perturbations are rapidlyse obtained if we represent the firing number as a function of
dumped out, but perturbations with a large amplitude are; for a fixedt, [see Fig. {c)].
amplified and the system returns to its steady state after Of course, the “naive” model we have just discussed is
much longer time than in the case of a small perturbationextremely crude, but it shows that devil's-staircase-like de-
The evolution forms a closed trajectofgo-called excitation pendence of firing number on the period of perturbations
cycle) in the phase space. For a given type of perturbation wghould be widely observed in excitable systems. It is true
can introducesy,, as the minimum strength of perturbation indeed. Such dependence can be found in a number of papers
that leads to the system’s excitation. The excitable systemgoncerned with periodic perturbations of a homogeneous ex-
have another interesting feature: just after an excitation theyjtable system which were published by Marek and co-
become refractory with respect to consecutive perturbationgorkers[3—-6]. Another staircaselike dependence of the fir-
and a certain amount of timgefractory time is needed be- ing number was observed by Toth, Gaspar, and Showalter in
fore they can be reexcited. The refractory tithés schemati-  spatially distributed excitable systems linked with a capillary
cally shown in Fig. 1a). tube[7]. The excitable waves were generated in one system
Let us consider two successive perturbations, occurring aind they might excite the other one via reagents’ transport in
times 0 and. Let us fix the strengtl of these perturbations. the capillary. In this experiment the diameter of the capillary
At time O every perturbation characterized bY(s>Sy,,)  controlled the strength of perturbation. If it was small, the
excites the system. A successful excitation by the secongbfractory time of the perturbed system was much longer
perturbation depends on the valuestadinds. If sis too  than the refractory time in the system where waves were
small, the system is not excited by the second perturbatioryriginally generated. As a result only a fraction of generated
nor by the first one. If the perturbation is strong enough, themvaves excited the system after passing through the capillary
reexcitation occurs wheti>t, . One may also expect thgt  and the firing number as the function of entering wave period
gets smaller when perturbation’s strength increases. The ahas a devil's-staircase-like depender{cé Fig. 6 in Ref.
guments given above indicate that areas of successive reej]).
citation [marked with “1” in Fig. 1(a)] should be placed in In this paper we are concerned with yet another example
the parameter space,$) as shown in Fig. (8). of a spatially distributed excitable system, in which such a
For a moment let us assume that the state of the system igsonant transformation of excitation occurs.
not significantly changed after an unsuccessful perturbation [et us consider a simple one-dimensional structure, com-
and the probability of excitation shown in Fig(al remains  posed of two intervals, in which the system is in an excitable
valid if a periodic sequence of perturbations is consideredstate, separated by a narrow passive barrier, where the time
Now t denotes the time from the last perturbation that ex-evolution is given by the diffusion equation. Such a system
cited the system. Let us consider a periodic sequence of pegan be seen as a prototype of a plane excitable medium—for
turbations at timest, ke N. It is easy to see that if, example, a membrane filled with an immobilized catalyst,
>t,(s) then each perturbation will excite the system. If which is divided into two subplanes by a stripe without the
t.(s)/2<t,<t.(s) then every second of them will excite the catalyst[8]. Within the active areas pulses of excitation may
be generated and they can propagate. In the passive barrier
reactions do not occur and some of the reagents can just
*Email address: kubas@ichf.edu.pl diffuse through it. If we consider pulses of excitation char-
"Email address: gorecki@ichf.edu.pl acterized by wave vectors perpendicular to the barrier then
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i . B FIG. 2. The time evolution of the value ofbefore the barrier
1.0 4 - (curve 1 and just behind ifcurve 2. The small maximgon curve

J I 2) do not develop into regular pulses, so the firing number equals
' 2/5. We have used the FH-N model with=3.14 (f,=0.318),d
=0.1707, and a uniform grid with=251.

Firing number
(=]
(=21
|

1 — the symmetry allows one to describe the system as one di-
0.4 | e ; mensional. We have studied the time evolution of such sys-
. . I tems[9] and we have shown that under certain conditions the
| barrier works as a transformer of the frequency for a regular
! train of pulses approaching it. As Fig. 2 shows, after a short
L B B B B L B B transient period a stable periodic output signal is observed
o0 g gé‘iweé’ﬁsper&fbaﬁ;fs [tp1/if<s)11'4 for the whole time within which the. computations are per-
formed (2= 10000). For the considered frequency of the
12 input signal and barrier’s width two out of each five arriving
i C oy pulses are transmitted, thus the firing number equals 2/5. The
107 ] transformation of frequency on the barrier was observed for
1 ! both FitzHugh-Nagumo[10] and Rovinsky-Zhabotinsky
08 models[11-13 of the Belousov-Zhabotinsky reacti¢t4].
! The implications of the frequency transforming by a passive
172 : barrier on selected signal processing devices were discussed
. in Ref.[15]. In our previous papergd,15] we were mainly
047 113, | concerned with quite simple signal transforming on a barrier,
' : like the division of the original frequency by 2 or 3, because
o such types of behavior are quite “robust,” i.e., they may be
Do : observed for a wide range of input signal frequencies and
0.0 EE— ' | ] barrier’s widths. However, for certain sets of parameters we
! Strenath of enurbaﬁonis/s " 4 have also found a more complex output signal. Here we give
ghete min more information on the frequency transforming phenom-
enon. The FitzHugh-Nagumo-type model is used for numeri-
cal studies. We present new modes of transformation, which
FIG. 1. The “naive” model of a perturbed excitable system. were not described in our previous.papers. Somg of these
Figure Xa): The probability that the second perturbation excites themOdeS have a h'g.h Ieyel of complexﬂy. We also dI.SCUSS the
system as a function of the strength of perturbati®rin s,.;., units _computatlonal dlfflcultlgs connected with t_he numgncal stud-
and the time separating perturbatidngor a givens the line sepa- ies of waves propagating through a passive barrier.

rating the excited systems by the second perturbation from unex- |N€ Paper is organized as follows. Section Il contains a
cited ones shows (s). Note that for timeg<t, and fors<1 the ~ Short description of the FitzHugh-Nagumo model, the nu-
system cannot be excited. Figurébt The firing number as the Merical method and an overview of the results concerning

function of the time interval between consecutive perturbations ofhe frequency transforming on a passive barrier. In Sec. Il

the systentin t,/t,(s) units| for a fixed strength of perturbation. We indicate the numerical problems we have faced. The new
Figure Xc): The firing number as the function of the strength of results are presented in Sec. IV. Section V contains the con-
perturbations, for a fixedt, . clusions.
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Il. TRANSFORMATION OF FREQUENCY . pasbsivg area . ‘
ON A PASSIVE BARRIER " 0 1o & oi2 i3e |
0 active area ° [ ] active area n
A. The FitzHugh-Nagumo model n n2
(the last node ) (the.first node )
The FitzHugh-NagumdFH-N) model was originally in- before the barrier) behind the barier)

troduced to describe the excitable behavior of nerve tissue: Al e ome dh db b 2
[16,17. It uses two variablegu, v) and the dynamics of the , & S, S, ‘-b) B =0,
first of them is given by a third-order polynomial in, " 280pls. 40 40 40 30 40 40 40 250 pis.
whereas the dynamics related dois a linear function inu . .

andv. Even such a simple model shows an interesting non- FIG. 3. The scheme of the system studied. Black intervals cor-

linear behavior. In even more simplified version of 'éSPond to active areas, gray ones mark the barrier. Binthe

FitzHugh-Nagumo model we use, the dynamics in active arparrier is located between the grid poimtsandn, (excludingn;,

; ; ; ; . andn,). The value ofu is observed at the grid points,i,, andis.
eas is described by the following equatiqns, 16,17 Line B: the scheme of the adaptive grid for=800; the distance

4dl, di=gdly,
<

au between grid points is given above the line, the number of grid
L y[ku(u—a)(u—1)+v]+D,V2u, (1) points separated by a particuldlris given below the line.
calculations, while a crude grid far away from the barrier
v saves computer time without affecting the accuracy. In Fig. 3
ot yu (2)  the black lines correspond to excitable medium and the bar-

rier, indicated by the gray line, is located between grid points
n,; andn, (1<n;<n,<<n). It means that the evolution of the
system at all grid point§e[0,n;]U[Nn,,n] is given by the
; t of reaction-diffusion equations corresponding to the ex-
For these values of parameters the system has a single stg: ) .
P y g h %ﬁable systeniEgs. (1) and(2)], and the equations describ-

tionary solution (¢,v)=(0,0), homogeneous in space, which ; : . - :
is excitable. This system may be excited by a local decreadfd the passive mediuiiEgs. (3) and(4)] give the evolution

in the value ofu, which initiates a propagating pulse of at all grid pointsi € (n4, n,). The barrier’s widthd is esti-

with the parameters=0.03,y=1k=3.0a4=0.02(as given
by Motoike and Yoshikawa ifi10]) and D= 0.000 45[18].

concentration. The variablasandv cannot be directly as- mated as

sociated with concentrations of chemical spices, but their d=(n,—n;—1)dl, (5)
behavior resembles the one of the activdtgrand inhibitor '

(v) in a chemical system. wheredl,, is the distance between neighboring grid pofits

We assume that in the passive areas the kinetic terms aair calculationsll, is constant within the barrier and around
absent in the corresponding equations. The diffusion of actiit).
vator is possible, thus it is natural to call these regions “dif- There are free flow boundary conditions between passive
fusion areas.” The equations describing the time evolution ofand active media and no flux boundary conditions at both

uandv in these areas afd.0] ends of the interval. Initially both active and passive areas
are in their stationary states. Pulses of excitation are initiated
au 2 at the left end of the interval by a local decrease in the value
T =DV, B ofyto vini= — 0.8 and they travel to the right, coming across
the passive barrier on their way. We focus our attention on
D trains of pulses which are initiated regularly at tinkes, for
EZOZCOHSI 4 selected,>0 andk=1,2,3 ... Kpax. In the following we

distinguish the “input signal”(a train of pulses arriving at

with 7=0.03 andD,=0.00045, as in the excitable areas. "€ barriey and the “output signal’—a train of pulses going
away after crossing the barrier. The frequency of the input
signal is defined a$,= 11,

The concentrations of reagents of interest are calculated

In this paper we investigate a signal of a high frequencyusing an implicit method based on the Crank-Nicolson dis-
which passes through a passive barrier. By the signal weretization of the Laplace operatpt9]. The distance be-
understand a regular, stable train of traveling pulses initiatetiveen neighboring grid point&l) is the space step of nu-
at one end of the system with the frequerfgy The time  merical integration. In our computations we have applied
evolution of the signal is studied by numerical integration oftwo types of the space grids. In a part of calculations the
the reaction-diffusion equations in the active areas andvhole intervall has been divided inta equal partgin this
within the barrier[Egs. (1)—(4)]. For a signal formed by casedl=I/n). We have used equally spac@diform) grids
planar waves with the wave vectors perpendicular to the bamwith n=400, 800 or 1600. The passive gap has been located
rier the system can be modeled as an interval of the lelngth betweenn, =180 andn,= 189 for n=400,n, =360 andn,
For numerical integration it is divided into parts byn+1 =377 forn=800, andn;=720 andn,= 753 for n=1600.
points of a grid, including both end§&ig. 3). The distances In the other calculations we have used adaptive grids, for
between the grid pointdl may be different; by selecting a which the passive barrier and its neighborh¢sa the part of
fine grid around the barrier we can increase the accuracy ahe system which has the most important influence on sig-

B. Numerical integration of reaction-diffusion equations
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nal’s transformationhas been covered with a fine grid and at s
both ends of the interval a longer distance between grid
points has been used. We have considered a grid formed by L
n=2800 grid points and 30 of them are placed within the
barrier (the barrier is located between;=400 and n,
=431). The time evolution in the active areas surrounding
the barrier has been also calculated using the same fine grid
as for the barriedl,=dl/8. We have considered 40 grid
points on each side of the barrier, for which the distance
between them isll,,. Next there are 40 grid points on each

172

Time shit between consecutive pulses (tp |
(7]
[
¢

e

side with the distanced,, and yet another 40 points with S —sdl
the distance dl,,. The reaction-diffusion equations in the s.00] i 113
remaining part of the system are solved with a crude grid of 1.30 140 1.50 1.60 1.70

Width of the passive barrier (10d)

dl (see Fig. 3. In order to test the numerical stability we
have also used another adaptive grid, for which the total FIG. 4. Filtering ratio €,/f,) for the FitzHugh-Nagumo model
number of grid points i:1=870 and in this case the passive as a function of the barrier's widtfd) and the time shift between
barrier, located between,;=420 andn,=481, is covered consecutive pulsedy). The white, labeled areas correspond to the
with 60 points ofdl,=dl/16. In the active areas located on situation whenf, is the fraction off, given in the picture. Gray
both sides of the barrier the grid is fingl(16,40 pointg and color marks more complicated transformations of frequency. The
next it increases. as followst!/8,20 points,dl/4,40 points, dashed lines in Fig. 4 correspond toa)(,=3.10 (f,

andd|/2,40 points. The rest of the system is covered with the= 0-323),0)t,=3.70 (f,=0.270),€)d=0.160. The cross stands
space ste|. for t,=3.10 (f,=0.323) andd=0.1702.

The values of activator and inhibitor are recorded at indi-  Figyre 4 presents a diagram in the space of parameters
cators located at the grid pointg (before the barrier i (d,t,) showing “phases” in which the filtering ratio is some
(just behind the barrigr andis, far behind the barrier, as proper fraction given in the diagratthe white regions with
shown in Fig. 3. By comparing the time evolutionsigfi,,  labelg. For example, in the area labeled as “1” every inci-
andi; we can tell whether a pulse that arrives at the barriedent pulse is able to get through the passive baitiee
is able to cross it. Moreover, by counting the number ofbarrier is transparent to all pulgesnd in the area labeled as
maxima of activator within a certain time interval we can “1/2” every second of the incident pulses is transmitted. The
measure the frequency of the input and the output sigriigls ( gray regions between the labeled areas in I_:ig. 4 correspond
andf,, respectively. When calculating , andf, we neglect to more complex transmission patterns. Widdncreases we
a few initial pulses(usually 10 or 20 in order to eliminate observe that the filtering ratio decreases, which means that
transient behavior at the beginning of evolution. To describéhe pulses are less and less frequently transmitted. Finally the
quantitatively the passive barrier as a device that transformiarrier becomes too wide and no pulse can cross it, which
chemical signal frequency, we introduce the filtering rétio  corresponds to the area labeled as “0.” The dashed lines in
a firing number, if notation of Ref$3—7] is used defined as  Fig. 4 mark t,=3.10(f,=0.323), line @); t,=3.70(f,
folfp. =0.270), line p); andd=0.160, line €). The cross stands
for t,=3.10 andd=0.1702 and shows the parameters used
to calculate the time series presented in Fig. 5. The filtering
ratios as functions of parameters from the dashed lines

Let us consider the system shown in Fig. 3. A single pulsga),(b), and(c) are discussed in Secs. Ill and IV. Figure 4
of excitation traveling in the excitable medium towards thehas been obtained for a uniform grid with=251 anddt
barrier may cross it, provided that the barrier is narrow=5x10"3,
enough. It means that the pulse arriving at one side of it Figure 5 illustrates the filtering ratio equal to 1(the
excites the active area on the other side and in this case thegion corresponding to 1/3 is located in the bottom right-
barrier is transparent to the pulse. The maximum width of ehand side corner of the diagram in Fig. he values of
transparent barrier is called the penetration dejth,. Bar-  activator at the grid points; [the upper curvél)], i, (curve
riers wider thand,,,, are impenetrable for a single pulse, 2), andi; (curve 3 (cf. Fig. 3, lineA) are presented as a
because for a wide barrier the value of diffusing activator afunction of time. Curve 1 corresponds to the incident pulses
the other end of the barrier is too small to excite the active(input signa) with frequencyf ,=0.323. Curve 2 shows the
area behind the barrier. We have four@l18] that for the  transmitted pulsegoutput signal, recorded just behind the
parameters of the model used in this stutly,,~0.163. barrier. Its frequency,=f,/3. It is clear that every third of

Now let us consider a train of incoming pulses with athe incident pulses is able to cross the passive gap. Small
constant frequencyy. It turns out[9,19] that for a certain  oscillations that can be seen on the curve 2 do not develop
range off , and barrier's widthd the passive gap transforms into pulses and they disappear when the output signal is ob-
the frequency of the input signal. It means that the frequencgerved at larger distances behind the bar(adr curve 3.
of the transmitted signdl, (observed behind the barrjes a  The width of the barrier isl=0.1702. Figure 5 has been
fraction of f,. Some of the incoming pulses are stopped atobtained for a uniform grid withn=400,i,=170,i,
the barrier, while the others get through. =199,i,=390, anddt=1x10"3.

C. The frequency transforming on a passive barrier
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Width of the barrier (10d)
FIG. 5. The time evolution of the value ofat the grid point ; o ) ]
(the upper curve )1 at the grid pointi, (curve 2, and at the grid FIG. 6. Filtering ratiof o /f, for fixed t,=3.10 (f,=0.323) and
pointi (curve 3. The evolution at, (curve 3 is presented to show d changing within the presented range. All results have been ob-
that the small maxima appearing on curve 2 disappear at longdfined for_dt=1><1(_)’3, tmax="500, but for each of the curves
distances from the barrier. Filtering ratio equal to 1/3 is illustrated (2) —(d) different grids have been used. This figure illustrates the
We have used,=3.10 (f,=0.323) andd=0.1702(this point is dependence of the results on computational parameters. Cajyve (
marked with a cross in Fig.)4 marked with empty triangles. ordinary grid with=400. Curve
(b): marked with empty diamonds, ordinary grid with=800.
Curve (c): marked with filled circles, adaptive grid with==800.
Il NUMERICAL DIFFICULTIES Curve (d): marked with empty circles, adaptive grid with=870.

The solutions that correspond to the filtering ratio 1/2 or
1/3 are quite stable numerically and they cover a large part . . . .
the parameters’ space. In order to learn more about wh efore and behind thg passive gah F|g. 3, lineA). :

. . Results presented in Fig. 6 show a rich structure of differ-
happens in the gray areas of Fig. 4 we have performed a_, ...~ . ; S

. ; . . ent filtering ratios, which is much more complex than the one

series of calculations with one of the parameighe width

fth Ve barried or the ti hift betw i shown in Fig. 1c) for the “naive” model of an excitable
orthe passive barried or the time shilt between consecutive system. Of course, we can observe some similarities: the
incident pulsest) fixed and the other changing within a

- - A h region ofd for which f,/f,=1/2 is the dominant one, and
certain range. By monitoring th_e input and output signalShe second most important fg /f,=1/3. But we also see
(similar to those presented in Fig) &/e have been able 0 fijering ratios between 1/3 and 1/2, which are absent in the
calculate the filtering ratio for the given combination @f  «n5ive” model. The calculations show that althouggv f , as
and t, and describe the sequence of transmitted/stopped function ofd looks very similar for different values of
pulses in the input signal, which leads to a particular value oparameters of integration, it shifts towards larger values of
fo/f,. The calculations have been done for parameters owhen more accurate integration techniques are applied. A
the lines of constand or t, shown in Fig. 4. The computa- significant shift between curvéa) and(b) in Fig. 6 indicates
tions have had to be performed for a period of time longthat for the uniform grids that we have used the results de-
enough to observe many full cycles of signal transformationpend on the grid size. It is worth noticing that the behavior of
However, we have discovered that the results of calculationghe filtering ratio as a function af does not change, but the
are quite sensitive with respect to the size of the grid and théunction as a whole is just shifted towards wider barriers. It
time integration stepdt) used in computations. is expected that for yet finer grid we should obtain results
Figure 6 presents a set of curves showing the filteringhat are numerically stable, but a finer grid means that more
ratio for t,=3.10 (f,=0.323) as a function of. The con-  grid points should be used to describe a system of the same
sidered values of parameters are situated on the horizontsize. However, in the implicit method of solving parabolic
dashed linga) in Fig. 4. All results have been obtained for reaction-diffusion equations the solution at each time step is
dt=1x10"2 and the calculations have been performed up tambtained via iterations. In our case the roundup errors have
tmax=500. For curve(@) in Fig. 6, marked with empty tri- led to instabilities when few thousands of grid points have
angles, a uniform grid witm=400 has been used. Curve been used. The adaptive gritlsig. 3, line B) allow one to
(b), marked with empty diamonds, indicates the results for abtain more accurate numerical solutions. For such grids the
uniform grid with n=800. In case of curvegc) (filled fine resolution within the most important area of the investi-
circles and(d) (empty circle we have used adaptive grids gated system may be achieved without using large number of
with n=800 (c) andn=2870 (d), respectively. The value of grid points, which provides both accuracy and stability of
dl, in these simulations depends on system'’s lehgtid the ~ computations. As already mentioned, cufegin Fig. 4 has
number of grid points used. We have analyzed signals dbeen obtained for the adaptive grid witl=800. The reso-
indicators i; and i,, located at approximately constant lution in the neighborhood of the passive gap for this grid is

qﬁstance ofl;=0.6 (in the dimensionless units of distance
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dl,=dl/8~0.06 (for |~25.72), which is four times smaller 0.60 T " ' '

thandl for the finest uniform grid. For curvéd) this resolu- 12

tion is twice higher, buf,/f, as a function ofl obtained for . a .
both grids[curves(c) and d)] are almost identical. There-
fore we believe that the adaptive grid with=3800 grid
points is sufficient for our calculations and we have used it to
obtain results given below.

Several values of the time step for the integratiat (
=5x10"3, 1x10°3, and 1x10 %) have been used to
verify the consistency of the results.Although the implicit
algorithms should be in general stable for all values of time
and space integration steps, we have observed that numerical
instabilities may appear fatt=5x 102 and largen. On the
other hand, the results fait=1x10"3 and dt=1x10"* 0.00 — T
have been regular and consistent. Consequently, we have de- 1.71 1.72 1.78 1.74 1.75
cided to usalt=1x 102 for most of calculations described Width of the barrier (10d)

in this study. FIG. 7. Filtering ratiof, /f , for fixed t,=3.10 (f,=0.323) and
d changing within the presented range. The filled circles correspond
IV. COMPLEX PATTERNS OF OUTPUT SIGNALS to computational points. The curve forms several plateaus that are

. . . . labeled with corresponding values of the filtering ratiig2, 2/5,
The results presented in this section have been obtaineflz 1/4 and p At points labeleca—k other values of o/f, (and

for the adaptive grid witm=800. The passive area has beengher transmission patternbave been observed. These values as

located between; =400 andn,=431(30 grid points inside  well as all the sequences of transmitted pulses are given in text
the passive barrigrThe incoming and outgoing pulses have (sec. IV).

been monitored at grid poinig=390 andi,=441, respec-
tively. The computations have been carried out with timeterns of frequency transforming and are labeled with appro-
stepdt=1x10"3, up tot,,.,=500, if not explicitly stated priate filtering ratios. Looking from left to the right we have
otherwise. About 150 pulses arrive at the barrier within themodes: “1/2” with the sequence (Q1‘2/5"” with (01)
selected timé - X(001),*1/3" with (001),‘‘1/4" with (0001), and finally

Let us introduce a notation that describes output signal‘0” with the sequence 0. It is remarkable that a “simple”
The incident pulses, observed iat provide a natural time frequency transformation occurs within a wider range of bar-
scale in the system. We write “1” if the pulse gets success+ier's width than a complex one. Other interesting transmis-
fully through the passive barrier and is observed,air “0” sion patterns, located between those plateaus, have also been
otherwise. Thus the output signal may be coded as a s@bserved, but the ranges of valuesdpfwithin which those
guence of “0” and “1.” In such notation a common case in patterns appear, are so narrow that we have detected them
which every second pulse passéftering ratio f,/f,  just for a single width of the barrier. The unique patterns
=1/2) is coded as (01) and the mode “1/3,” presented inhave been labeled with lettees-k in Fig. 7. Probably the
Fig. 5, is described as (001). It is understood that the giveimost complicated transmission pattern is associated with
sequence repeats periodically. A pattern coded apointa, located just below the plateau “1/2.” In this case the
(abc...)P(def...)d (wherep and q are positive integer sequence of pulses behind the barrier is {§D01)
number$ means that behind the barrier first the sequence<(01)'%001) and the corresponding filtering ratig /f,
(abc...) is observedp times and next the sequence =29/60. For pointb in Fig. 7 the corresponding pattern is
(def...) appearsq times. In this notation, nonperiodic (01)*(001)(01f(001) resulting inf,/f,=11/24, for pointc
modes correspond to an infinite sequenceadfdde. ..). If it is (01)3(001) fo/fp=4/9; for pointd it is (01)2(001),
pattern’s sequence is finite then it is very easy to calculaté,/f,=3/7; for point e it is (01001)3(0101001)1‘0”p
the corresponding filtering ratif,/f, because it equals to =9/22; for pointf it is (Ol)(OOl)Z,fO/fp=3/8; for pointg it
the sum of the symbols in the sequence divided by the numis (01)(00155,f0/fp=7/20; for point h it is (001)
ber of symbols. For nonperiodic modes we can estimate th&(0001) f,/f,=2/7; for pointj it is (00001)f,/f,=1/5,
filtering ratio using a finite part of the sequence and of coursand pointk it is (0000001)f,/f,=1/7.
the more pulses are taken into account, the better approxima- Figure 4 suggests that transmission patterns correspond-
tion is achieved. ing to filtering ratios greater than 1/2 are also present. Such

Figure 7 presents the filtering ratio far,=3.10(f, patterns are absent in the “naive” model of excitable systems
=0.323) as a function of the width of the passive barrier[Figs. 1b) and(c)]. To see them clearly calculations fgy
changing from 0.171 to 0.176 with increment of 0.0Q0%is  =3.70(f,=0.270) have been performed for the barrier’s
has been achieved by changing the total length of the systemidth d changing from 0.130 to 0.171 with increment of
| from 27.49 to 28.19 with increment of 0.01G his value of  0.001 ( | changing from 20.93 to 27.49 with increment of
t, corresponds to lin€a) in Fig. 4. The results coming from 0.16. This value oft, corresponds to lin€b) in Fig. 4. The
our computations are marked with filled circles. In Fig. 7 oneresults are plotted in Fig. 8. Indeed, one may see here several
may notice several plateaus, which correspond to simple paplateaus, labeled with corresponding filtering ratios, which

0.40 —

0.20 —

Ratio of frequencies (fy/ fp)

tp=3-10 (f,=0.323)
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FIG. 8. Filtering ratiof, /f, for fixed t,=3.70 (f,=0.270) and

d changing within the presented range. The filled circles correspond FIG. 9. Filtering ratiof , /f,, for fixed d=0.160 andf , changing
to computational points. The plateaus are labeled with correspondrom 0.25 to 0.28(see the bottom axiswhich corresponds to,
ing values of the filtering ratidl, 6/7, 4/5, 3/4, 2/3, 1/2, and.0At decreasing from 4.00 to 3.5&ee the approximate top axisThe
points labeleda—e other values off,/f, (and other transmission filled circles correspond to computational points. The plateaus as
patterng have been observed. These values as well as all the sgyell as single points are labeled with corresponding valuds tff,
quences of transmitted pulses are given in t&dc. IV). (1, 9/10, 4/5, 3/4, 2/3, and /ZThe lettersA,B,C, andD mark the

] intervals of the diagram which have been studied with a higher
are greater than 1/2. From left to right we have: plateau “1"resolution. The results for the interva-B are presented in Fig.
with the sequencél); plateau “6/7" with (0111111), pla- 10(a) and for the intervalC-D in Fig. 10b).
teau “4/5” with (01111); plateau “3/4"with (0111); plateau

“2/3” with (011); plateau “1/2" with (01), and plateau “0” .
with the trivial transmission patterr§0). Moreover, we patternd a and 3, see Fig. 1(0)] between the plateaus cor-

have observed more complex output signals. The pointgesponding to filtering ratios 2{3011) quéand ,1/2[(_01)
labeled by letters correspond to the following patterns and"©ddl. One of these patternsg] describes quite simple
filtering ratios: point a, (0)(1)35,]:0”‘):35/36; point b, trapsform_auon of th_e original S|gna_l to (Ql)(Oll) mode,
(O)(1)14,fo/fp=14/15; point c, (0)(1)1Oif0/fp: 10/11:  Which is just 1:1 mixture of the ne|ghbor|ng 'modes. T_he
point d, (0)(1)8,f0/fp:8/9, and pointe (011111)f,/f, other point @) corresponds to a more interesting behavior.
=5/6. The output signals observed here are dual to thosesing the samelt anddl, as for the other points shown in
with filtering ratios smaller than 1/2. Fig. 1Qb) (filled circles we have observet,/f,=0.519 17.
Figure 9 presents the filtering ratio fod=0.160 The decrease in time steft increases the filtering ratio as
(1=25.72) plotted versus the frequency of incident pulsedollows: dt=1x10"* givesf,/f,=0.556 02(empty circlg,
f,€[0.25,0.28 (the time shift between consecutive pulsesdt=2X 1075 gives fo/f,=0.57594 (empty triangle, and
changing from 3.57 to 4.00 with increment of 0.02; approxi-dt=1x10"° gives fo/f,=0.578 95(cross. Moreover, we
mate values of, are given on the top axis of Fig).9These  have observed that times between transmitted pulses are not
values ofd are placed on the ling) in Fig. 4. The numerical always a multiplicity oft,. In order to explain it we have
labels in Fig. 9 give the filtering ratio observed for corre- examined the time evolution(t) at the pointsi; andi,.
sponding plateaus or points. Looking at Fig. 9 from left to Figure 11 shows the relevant part of it. One can notice that in
the right we have: plateau “1” with the sequen¢E); point  some cases the transmitted signal does not develop into a
“9/10” with the sequence (0)(1)%; point “4/5" with pulse,u(t) slightly decreases and then it starts to increase
(01111); point “3/4” with (0111); plateau “2/3” with (011) again, forming a pulse shifted with respect to the forcing
and plateau “1/2” with (01). In order to check if the filtering signal. Such a strange behavior féy=0.2660¢,= 3.76)
ratio is @ monotonic function of , we have performed a does not disappear when we decreds@anddl,. The mo-
number of calculations fof ,[0.2604,0.2618 and for f, ment it appears first and the time intervals between succes-
€[0.2646,0.2674 The ends of these intervals correspond tosive strange excitations depend @t but we do not observe
f, for pointsA,B,C, andD in Fig. 9. We have probed the any regularities. The presence of irregular “strange excita-
system’s behavior usingt,=0.002 (corresponding tasf,  tions” makes the filtering ratio at the point dependent on
=0.000 14). In the intervaA-B the behavior is trivial, which ~ dt. f,/f, at this point still remains smaller than 0.6 so we
means that the studied systems splits into two classes correannot exclude a nonmonotonic dependence of the filtering
sponding to (0111) and (011) modesee Fig. 108)]. ratio on f,/f,. Moreover, such strange excitations are ob-
Similar calculations have been performed for systems loserved for the whole range of time steps we have used, so we
cated between point€ and D in Fig. 9 (it corresponds to are unable to blame numerical instabilities for their presence.
f,€[0.2646,0.2674). In this case we have observed two The time evolution of the output signal between the strange
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d=0.160 B ] 1
A
0.65 —— I . T
0.2608 0.2616 T T T l T l T l T
Frequency of incident pulses (fp) 128.0 132.0 136.0 140.0
0.70 . : : . ‘ Time (arb. units)
R 218 B . FIG. 11. A part of the time evolution of the value ot the grid
. c pointi, (input signal is represented by the upper curyerid at the
ol 0857 grid pointi, (output signal is represented by curvedbserved for
%" 1 d=0.160f,=0.2660 withdt=1X 10" % [point « is represented by
2 the cross in Fig. 1®)]. The arrow marks the position of the strange
@ 0607 excitation in the output signal.
g i
_g 0.55 —| We have observed many different patterns of the transmit-
= | ted signal, which depend on the frequency of the input signal
on the barrier’s width. We have found that the mode in which
d=0.160 : . . .
0.50 1 every second pulse from the input signal is transmift{@d.)
. I T . T modg is the most common one for which a nontrivial trans-

02650 0-2660 0.2670 formation [i.e., different from (0) or (1) of the original
Frequency of incident pulses (fp) K .. .
signal occurs and it is observed for a wide range of param-
FIG. 10. Results of a more detailed examination of intervals€ers. We have also found a family of transmitted signals in

A-B and C-D from Fig. 9. Figure 1): Filtering ratio f,/f, for ~ Which one signal out oh arriving gets through the barrier
fixed d=0.160 andf,, changing from 0.2604 to 0.2618. Poims [(0)"%(1) modd. These signals, characterized by the firing
andB in this figure correspond exactly to poimssandB in Fig. 9.  number 1A, contribute to the devil's-staircase-like behavior
We do not observe any filtering ratios different from 3/4 or 2/3. of the firing number, expected on the basis of the “naive”
Figure 1@b): Filtering ratiof,/f, for fixedd=0.160 andf, chang-  model of a perturbed excitable system. However, we have
ing from 0.2646 to 0.2674. The filled circles mark the computa-5is0 observed less trivial patterns of the transmitted signal.
tional points. Point<C and D in this figure correspond exactly 10 There s another interesting family of transmitted signals,
points C and D in Fig. 9. We have found a “strange” poink \hich can be described 48)(1)" ! and corresponds to the
between plateaus 2/3 and 1(labeled with values of the filtering case when only one signal is not transmitted out of every
ratio), for which the value off,/f, depends on the time step of . ing “Sch behavior cannot be described by the “naive”
'n;egrat:jor}' Dlgftereft i%m??o(lsum;rk_thle )va(ljtieslof ;rz)e I'lt(e”ngt ratio model, but comes out quite naturally, if one assumes that an
obtained for:dt=1x10"" (filled circle), dt=1X10"" (empty ) ' ;
e - 2210 ey g a1 110 o nthe - $XCE00 ST 11 Do s e St e mey
studied region we have obs_er\_/ed the pgitthat is regular and discussion in R()a/1[7])p Finally, we have observe?:i many com-
(::O;Z)S_ponds to the transmission pattem (01)(OHtts fo/f, plex structures of the output signal, which follow the struc-
ture of the Farey tref20] (take, for example, pointa—h in
excitations is a mixture of (01) and (011) modes with dif- FIgIInY{lhe vaper we have focused a lot of attention on the
ferent proportions.
Prop numerical aspects of the problem, because the very complex
patterns that we observed were related to the numerical in-
stabilities and disappeared when more accurate numerical in-
In this study we are concerned with the signals obtainedegration methods were appli¢dith the sole exception of
after a regular train of pulses crosses a barrier of a passibe pointa—Fig. 10b)—for which evolution was complex
medium. The calculations have been performed for the exfor any method of numerical integratibn
citable medium described by the FH-N model, but we be- Finally, we would like to mention that structured signals
lieve that qualitatively the results may be applied to anyhave a transient character. It is known that the velocity of
excitable system. a pulse of excitation increases when its distance to the

V. CONCLUSIONS
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previous pulse is largdR1]. Thus, far behind the barrier, a over, simple frequency transforming modes have been ob-
complex output signal transforms into a regular train ofserved in recent experiments with the Belousov-Zhabotinsky

pulses. However, its frequency remains unchanged.

reaction, in which trains of excitable waves were crossing a

Similar type of frequency transforming have been foundpassive regiofi22—24. We expect that very complex modes

for models of the Belousov-Zhabotinsky reacti®15] (the
Rovinsky-Zhabotinsky and the Oregonator mogeldore-

of frequency transforming described in this paper will be
also observed experimentally.
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